主题
技术文章
- 250131 LangChain调用DeepSeek大模型
- 250212 LangChain实战开发-这坑爬不出来,止步不前
- 250402 LangChain全面实用指南:如何利用RAG提升效率
核心代码块
切分文本
python
from langchain.text_splitter import RecursiveCharacterTextSplitter
import minge_config as config
document = config.text_documents
# 递归字符文本分割器
splitter = RecursiveCharacterTextSplitter(
# separators=["\n\n", "\n"],
chunk_size=100,
chunk_overlap=10
)
# 分割文档
chunks = splitter.split_text(document)
for i,chunk in enumerate(chunks):
print(f"Chunk {i+1}: \n{chunk}\n")带语义召回功能的Agent
python
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document
def hg_embed():
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") # download model 90M
documents = [
Document(page_content="现在使用Vibe Coding,还晚吗?我该怎么端好程序员这个饭碗,是在给你减负吗?"),
Document(page_content="问题一: 效率降低、结果偏离、输出不稳定"),
Document(page_content="问题二:应对蜜月期后的无力感"),
Document(page_content="问题三:应对非技术人员冲击和价值焦虑"),
Document(page_content="警惕AI的“过度设计”倾向"),
]
# 构建向量数据库
db = FAISS.from_documents(documents, embeddings)
query = "有哪些问题,请先做好梳理"
# 执行语义相似度召回
results = db.similarity_search(query,k=2)
# 打印结果
for result in results:
print(result.page_content)
if __name__ == "__main__":
hg_embed()